Rutgers University: Algebra Written Qualifying Exam
August 2017: Problem 2 Solution

Exercise. Let g be an invertible n X n complex matrix. Show that g can be written as
g = Su = us,

where s is diagonalizable and all eigenvalues of u are equal to 1.

Look at the JCF: Let ¢ = BJB™! where J is the Jordan decomposition of g. Then
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Look at a single Jordan Block J), ,:
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a diagonal matrix D;

matrix A; with eigenvalue 1

Note: g invertible = \; # 0 Vi = we can divide by \;
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— su where s = BAB™! is diagonalizable and u = BDB™*

So all eigenvalues of u are 1 since similar matrices have the same eigenvalues.
Similarly,

g=BJB'=BDAB ' =BDB 'BAB! = us




